在eclipse使用map reduce编写word count程序生成jar包并在虚拟机运行的步骤

发布时间:2019-05-27 06:00:05发布者:Mr.Zhang阅读(383)

---恢复内容开始---

1.首先准备一个需要统计的单词文件 word.txt,我们的单词是以空格分开的,统计时按照空格分隔即可

hello hadoop
hello yarn
hello zookeeper
hdfs hadoop
select from hadoop
select from yarn
mapReduce
MapReduce

2.上传word.txt到hdfs根目录

$ bin/hdfs dfs -put test/word.txt /

3.准备工作完成后在eclipse编写代码,分别编写Map、Reduce、Driver等Java文件

WordCountMap.java

map执行我们的word.txt 文件是按行执行,每一行执行一个map

WordCountMap.java

map执行我们的word.txt 文件是按行执行,每一行执行一个map

package com.ijeffrey.mapreduce.wordcount.client;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* map 输出的键值对必须和reducer输入的键值对类型一致
* @author PXY
*
*/
public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> {

private Text keyout = new Text();
private IntWritable valueout = new IntWritable(1);

@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {

String line = value.toString();
// 我的文件记录的单词是以空格记录单词,所以这里用空格来截取
String[] words = line.split(" ");

// 遍历数组,并以k v 对的形式输出
for (String word : words) {
keyout.set(word);
context.write(keyout, valueout);
}
}

}

WordCountReducer.java

package com.ijeffrey.mapreduce.wordcount.client;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
* reducer 输入的键值对必须和map输出的键值对类型一致
* map <hello,1> <world,1> <hello,1> <apple,1> ....
* reduce 接收 <apple,[1]> <hello,[1,1]> <world,[1]>
* @author PXY
*
*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable valueout = new IntWritable();

@Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int count = 0; // 统计总数

// 遍历数组,累加求和
for(IntWritable value : values){

// IntWritable类型不能和int类型相加,所以需要先使用get方法转换成int类型
count += value.get();
}

// 将统计的结果转成IntWritable
valueout.set(count);

// 最后reduce要输出最终的 k v 对
context.write(key, valueout);

}
}

WordCountDriver.java

package com.ijeffrey.mapreduce.wordcount.client;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
* 运行主函数
* @author PXY
*
*/
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();

// 获得一个job对象,用来完成一个mapreduce作业
Job job = Job.getInstance(conf);

// 让程序找到主入口
job.setJarByClass(WordCountDriver.class);

// 指定输入数据的目录,指定数据计算完成后输出的目录
// sbin/yarn jar share/hadoop/xxxxxxx.jar wordcount /wordcount/input/ /wordcount/output/
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 告诉我调用那个map方法和reduce方法
job.setMapperClass(WordCountMap.class);
job.setReducerClass(WordCountReducer.class);

// 指定map输出键值对的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

// 指定reduce输出键值对的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

// 提交job任务
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);

}
}

}

4.将编写完成的代码打成jar包,并在集群上运行

将jar上传到到服务器,启动服务后运行我们自己编写的MapReduce,统计根目录下的word.txt并将运行结果写入output

$ bin/yarn jar test/wordCount.jar com.ijeffrey.mapreduce.wordcount.client.WordCountDriver /word.txt /output

注意:运行jar的时候要添加Driver的完全路径

运行完成后查看output结果:

$ bin/hdfs dfs -text /output12/part-r-00000

 






本文转自博客园,原文地址:https://www.cnblogs.com/XSG-960923/p/10928306.html